Nano-waste: Potential Environmental Health and Safety (EHS) Implications during Thermal Decomposition of Nano-Enabled Products (NEPs)

Dilpreet Singh, Georgios Sotiriou, Christa Watson, Wendel Wohlleben, Philip Demokritou

Sixth Sustainable Nanotechnology Organization Conference

Los Angeles, CA

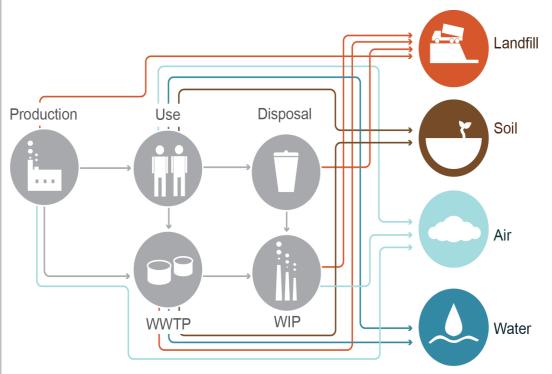
November 7, 2017

CENTER FOR NANOTECHNOLOGY AND NANOTOXICOLOGY

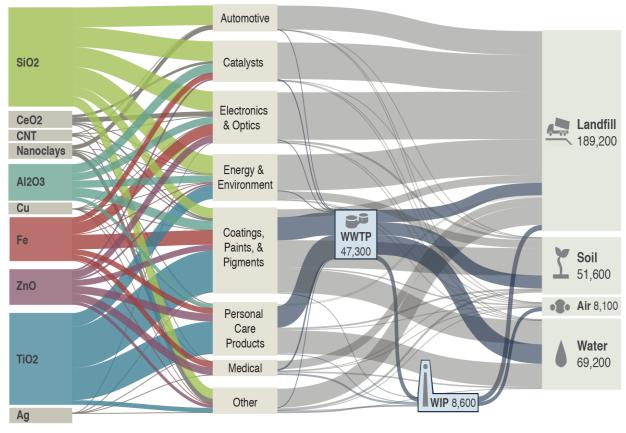
http://hsph.harvard.edu/nano

Presentation Outline

- Introduction Lifecycle Perspective Risk Assessment of NEPs
- Knowledge Gaps for End of Life: Thermal Decomposition Scenario
- Research Strategy:
 - Development of a novel "Integrated Exposure Generation System" to assess thermal decomposition and associated EHS implications of NEPs
 - Results for industrially-relevant NEPs
 - Conclusions, Outlook and Significance


"The nano the better": The new motto of many industries

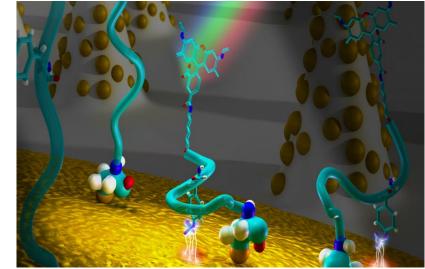
- Engineered nanomaterials (ENMs, < 100 nm)
 are increasingly being incorporated into a
 variety of consumer products (called nano enabled products, NEPs)
- Examples include cosmetics, paints, coatings, building materials, automobiles, printer toners, thermoplastics, and so on...
- ENMs impart superior properties like mechanical strength, thermal stability, optoelectronics, antibacterial resistance, etc. making them desirable in high performance products
- Global value of NEPs, ENMs and nanointermediates projected to reach US \$4.4 trillion by 2018 (Lux Research 2014)


Life-cycle considerations of ENMs across value chain and life cycle

Keller and Lazareva, ES&TL, 2014

- ENM properties change in both value-chain, and across life cycle of NEPs
- □ Limited data on ENM release across LC of NEPs
- ☐ Fragmentary exposure data for both environmental media and human populations

Nano-waste crisis: ENMs from major applications across life cycle

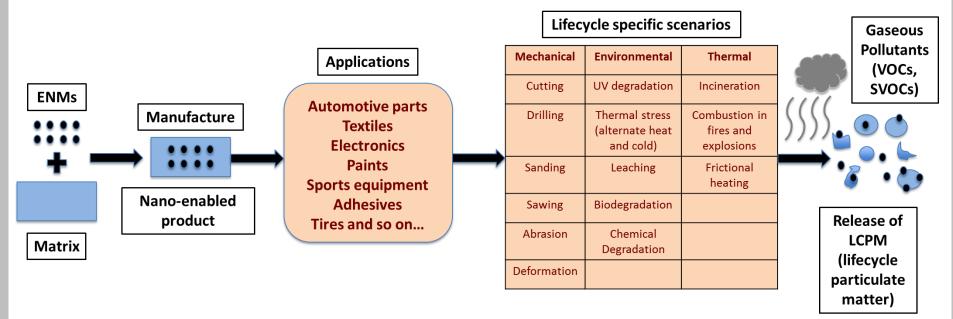

(all flows in metric tons/yr, 2010 estimates from Future Markets, Inc.)

Keller and Lazareva, ES&TL, 2014

- ☐ 60-80 % of ENMs end up in landfills
- 190,000 m. tons/yr of ENMs in landfills
- □ 20,000 m. tons/yr in WIP
- Two applications contribute the most in releases in environmental media:
 - Personal care products
 - Coatings, paints and pigments

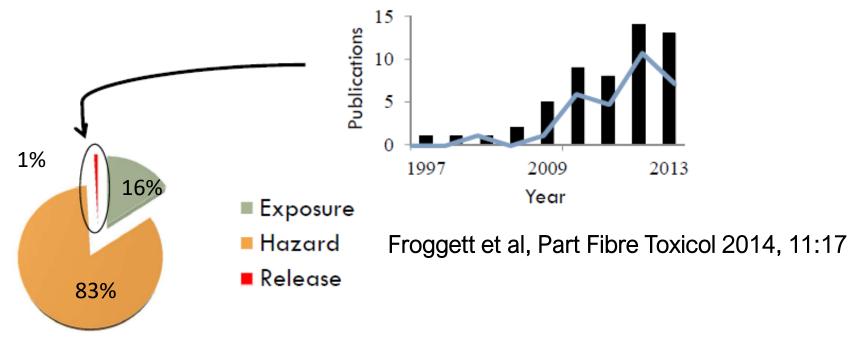
How is Nano Risk being assessed?

- ENMs have unique properties as compared to their macroscale counterparts
- Mounting evidence shows that some ENMs may elicit adverse biological and environmental effects



Source: http://nanobionics.mntl.illinois.edu/LNBL/

- HOWEVER, the current "modus operandi" in nano risk assessment focuses only on the hazards of pristine ENMs, which is not appropriate to address risks associated with NEPs across their lifecycle
- Nano risk assessment must include exposure data across the lifecycle (from Manufacture → Consumer Use → End-of-Life) and toxicology of associated nano-releases, since RISK = EXPOSURE x HAZARD


Lifecycle Particulate Matter (LCPM) Releases from NEPs

Releases from NEPs will be <u>Application</u>- and <u>Lifecycle Scenario</u>- specific

- Released LCPM expected to have different physicochemical, morphological and toxicological properties than the pristine ENMs
- Released LCPM <u>may or may not contain the ENMs</u> originally incorporated in the matrix
- LCPM release may be accompanied by release of gaseous co-pollutants such as semi/volatile organic compounds (e.g., PAHs)
- Overall LCPM + gaseous release and their physicochemical and toxicological properties may be different for a NEP compared to a product without ENMs

Limited but emerging research on LCPM release for families of NEPs

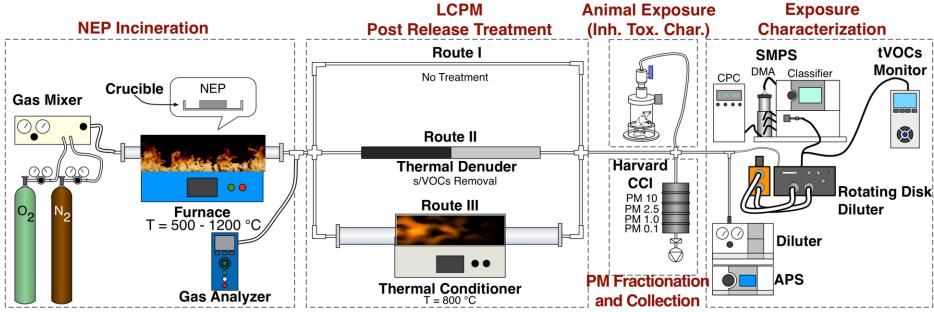
~<u>54</u> studies focused on inducing, detecting & characterizing release from solid nanocomposites

Major drawback: Lack of standardized, reproducible LC specific nanorelease methodologies

Prior TD Studies and their Limitations

- Very few studies
- Prior studies: On either pristine nanomaterials or surrogate wastes spiked with "free" ENMs
 - Walser et al. (2012) investigated fate of raw CeO₂ nanoparticles in an incinerator and found that they do not escape into the atmosphere but would likely end up in the solid waste residues
 - Vejerano et al. (2014) studied the fate of ENMs spiked to paper/plastic wastes during incineration and found that very small amounts of ENMs partition to the aerosol phase; most of them partition to bottom ash
- Most studies focus only on characterization of size and concentration of the released aerosol
 - Bouillard et al. (2013) studied incineration of CNT-polymer composites and found that a large fraction of released PM was in the nano-regime (<100 nm) and contained some released CNTs
- In toto, there is <u>lack of a detailed and systematic investigation</u> of potential factors (combustion conditions, NEP properties) governing TD behavior of families of NEPs

Knowledge Gaps related to TD of NEPs


There is lack of a <u>STANDARDIZED</u>, <u>REPRODUCIBLE</u> & <u>VERSATILE</u> methodology to investigate the thermal decomposition (TD) behavior of families of NEPs and its associated EHS implications

- SPECIFICALLY, following Knowledge Gaps remain:
 - Is there engineered nanomaterial release during TD of NEPs?
 - How does nanofiller impact the physicochemical and morphological (P-C-M) properties of byproducts?
 - What is the role of NEP matrix in nanofiller release and P-C-M properties of byproducts?
 - How does nanofiller presence affect the toxicological profile of byproducts?
 - What is the fate and transport of byproducts in various natural environments?

Research Strategy

TASK 1	Development Integrated Exposure Generation System for the EHS Characterization of Incinerated NEPs				
TASK 2	Detailed Physicochemical and Morphological Characterization of Byproducts (Released Aerosol AND Residual Ash) of Industry Relevant NEPs				
TASK 3	Assessment of EHS Implications of Byproducts (Released Aerosol AND Residual Ash)				
	in-vitro and in-vivo Toxicological Characterization	Fate and Transport of Residual Ash in Environment			
TASK 4	Safer-by-design Nano-Enabled Products				

Development of Integrated Exposure Generation Platform (INEXS)

Features of INEXS:

- Digitally controlled temperature (up to 1200 °C) and ramp rate
- Controlled combustion conditions (O₂: N₂ ratio)
- Real-time monitoring of aerosol size and concentration, gaseous composition and total VOC concentration
- Suitable for both P-C-M and toxicological characterization of released lifecycle particulate matter (LCPM)

- (P-C-M Char., In-Vitro/IT Tox. Char.)
- Sampling of size fractionated LCPM (PM_{0.1}, PM_{0.1-2.5}, PM_{>2.5}) using the Harvard Compact Cascade Impactor (CCI) (Demokritou et al., Journal of Aerosol Science, 2004)
- Provision to treat the released aerosol through different routes: <u>Route 1</u> (no treatment), <u>Route 2</u> (thermal denuder to selectively remove SVOCs), and <u>Route 3</u> (thermal conditioner for additional heat treatment for a minimum residence time to simulate commercial incineration facilities)

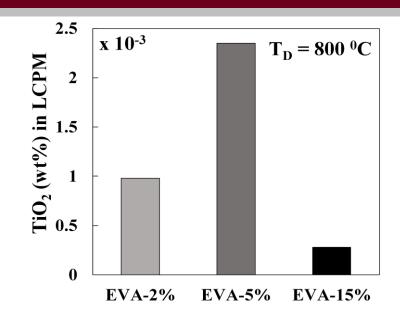
INEXS Setup in Lab

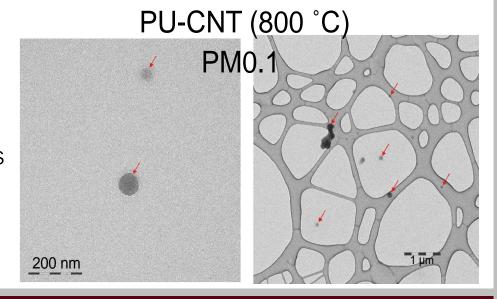
Primary tube furnace

Gas Analyzer

Thermal Denuder

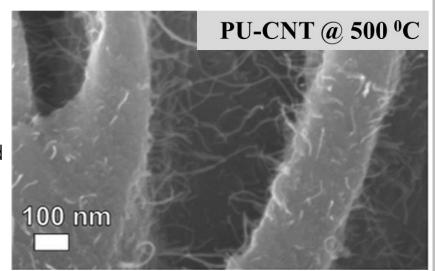
Thermal Conditioner

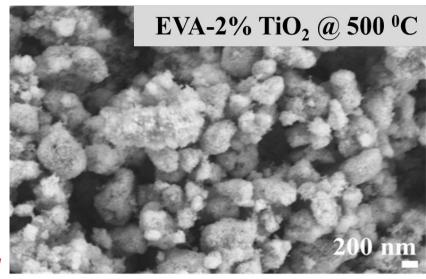

Compact Cascade Impactor (CCI)


Industrially-relevant NEPs (Thermoplastics)

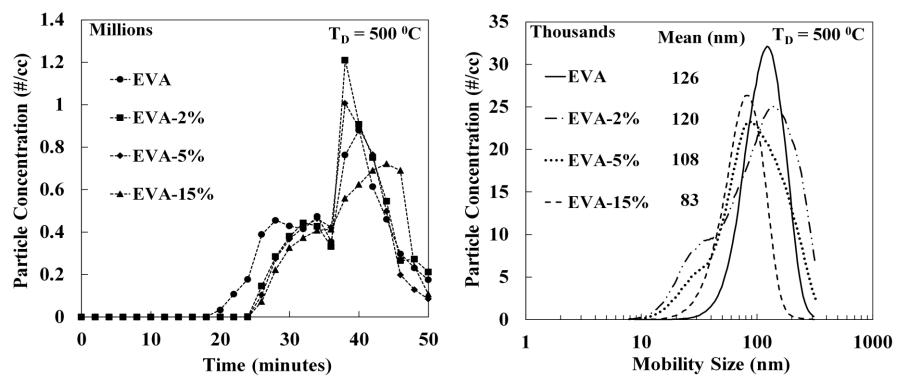
Matrix	Nanofiller	Nanofiller Loading (wt%)	Applications	
	-	-	Automotive, buildings, textiles	
Doburothono (DII)	Carbon black (CB)	0.1%		
Polyurethane (PU)	Carbon nanotubes (CNT)	0.1%		
	-	-	Packaging, buildings,	
Polyethylene (PE)	Fe ₂ O ₃	1%, 5%		
	Organic dye	2%	construction	
Polycarbonate (PC)	-	-	Automotive,	
Polycarbonate (PC)	CNT	3%	electronics	
Polypropylone (PD)	-	-	Packaging,	
Polypropylene (PP)	CNT	3%	electronics	
Ethylene vinyl	-	-	Packaging,	
acetate (EVA)	TiO ₂	2%, 5%, 15%	biomedical devices	

Results (1/10): Is there nanofiller release in the air?


- Yes, there is a detectable release of nanofiller, especially for inorganic nanofillers such as Fe₂O₃ (PE matrix) and TiO₂ (EVA matrix)
 - **Fe:** 0.026 wt% in $PM_{0.1}$ for $T_D = 800$ $^{\circ}C$ [ICP-MS]
 - TiO_2 : <0.0024 wt% in $PM_{0.1}$ for T_D = 800 °C [ICP-MS]
 - There is a "Nanofiller Loading Effect" on the nanofiller concentration in released aerosol
- However, no release in the air is observed for carbonaceous nanofillers such as carbon nanotubes (CNTs), irrespective of polymer matrix (PU, PP, PC)



Results (2/10): Is nanofiller present in the residual ash?


- Yes, most of the nanofiller is found in the residual ash after thermal decomposition of NEP
- Carbonaceous nanofillers (e.g., CNTs) are found in residual ash only at the lower decomposition temperature of 500 °C; but they are fully combusted at 800 °C
 - CNTs are homogenously dispersed throughout the degraded PU matrix and protrude from the surface
- Inorganic nanofillers (e.g., TiO₂, Fe₂O₃) are present in residual ash at both low and high decomposition temperatures.
 - TiO₂ is present as loose nanoparticles while the EVA matrix is completely combusted
- Nanofiller concentration in residual ash is significantly enriched as compared to its original concentration in the NEP
 - Potential for further release of nanofiller from degraded polymer matrix of residual ash under natural weathering conditions in landfills

Results (3/10): Does nanofiller affect released aerosol size/concentration?

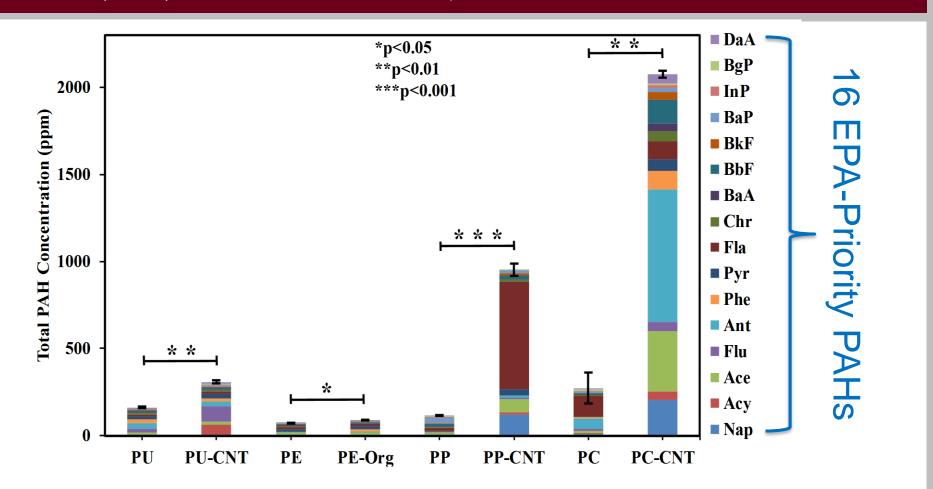
Real-time LCPM characterization: EVA vs. EVA-TiO₂

- Yes, nanofiller presence affects both released aerosol concentration and size distribution
- A "Nanofiller Loading Effect" is also observed on both released aerosol concentration and size
 - Both concentration and size tend to <u>decrease</u> with increasing nanofiller loading
 - Possibly due to combustibility changes with nanofiller loading

Results (4/10): Does nanofiller or polymer matrix determine LCPM EC/OC chemistry?

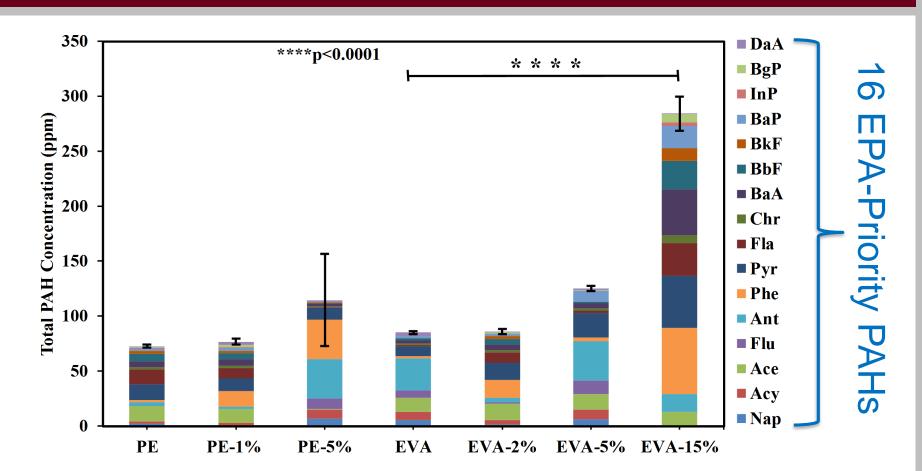
Elemental/Organic Carbon (EC/OC) Analysis of PM_{0.1}

	Released Aerosol				
NEP	500°C		800°C		
	EC (%)	OC (%)	EC (%)	OC (%)	
PU	0.9	99.1	0.8	99.2	
PU-CNT	0.7	99.3	0.9	99.1	
PU-CB	0.6	99.4	0.7	99.3	
PE	0.4	99.6	0.3	99.7	
PE-5% Fe ₂ O ₃	0.3	99.7	0.3	99.7	
PE-2% org. dye	0.3	99.7	0.3	99.7	
EVA	0.3	99.7	0.4	99.6	
EVA-2% TiO ₂	0.3	99.7	0.3	99.7	
EVA-5% TiO ₂	0.3	99.7	0.3	99.7	
EVA-15% TiO ₂	0.4	99.6	0.2	99.8	

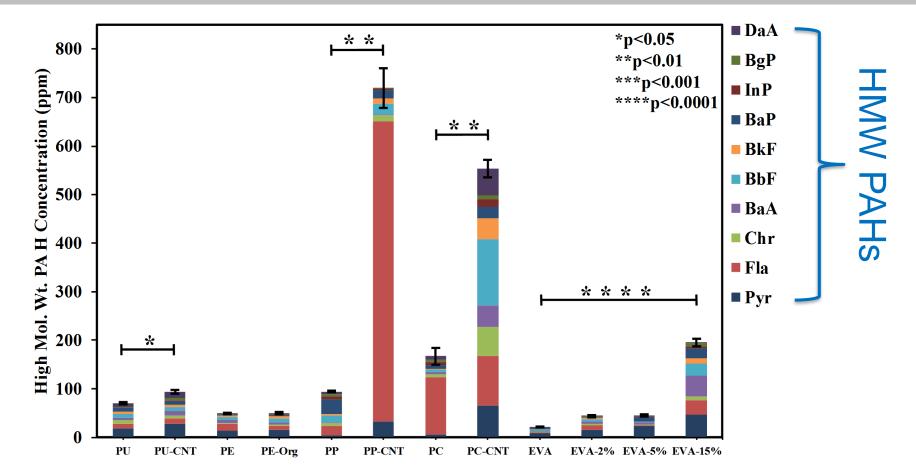

- Overall EC-OC chemistry of LCPM appears to be **governed by the "Host Polymer Matrix",** rather than the nanofiller.
 - LCPM contains >99 wt% of organic carbon (OC) irrespective of nanofiller or loading or final decomposition temperature.

More Questions??

□ How about the organic species in the released LCPM?

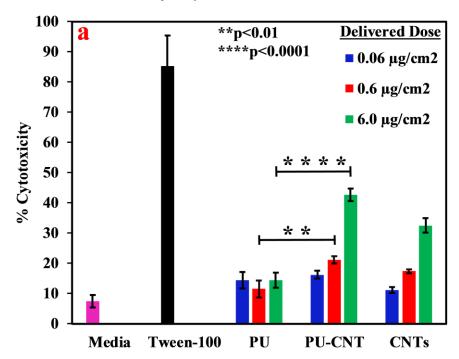

☐ Can certain released ENMs and gaseous copollutants synergistically modify p-c-m properties of OC and enhance toxicological profile of released LCPM?

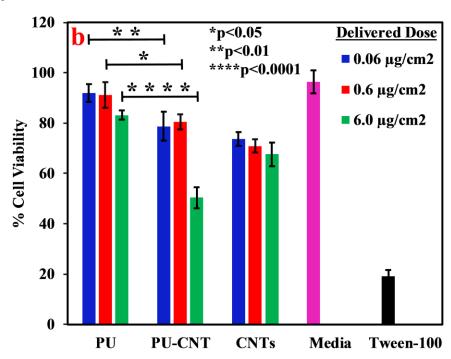
Results (5/10): How does nanofiller presence affect LCPM PAH content?


- The presence of nanofiller enhances the Total PAH content of LCPM
 - Enhancement for PC-CNT was highest, nearly 8 times that of PC

Results (6/10): How does nanofiller loading affect LCPM PAH content?

- Increase in nanofiller loading enhances the Total PAH content of LCPM for PE-Fe2O3 and EVA-TiO2
- Probably attributed to the catalytic activity of released metal oxide ENMs

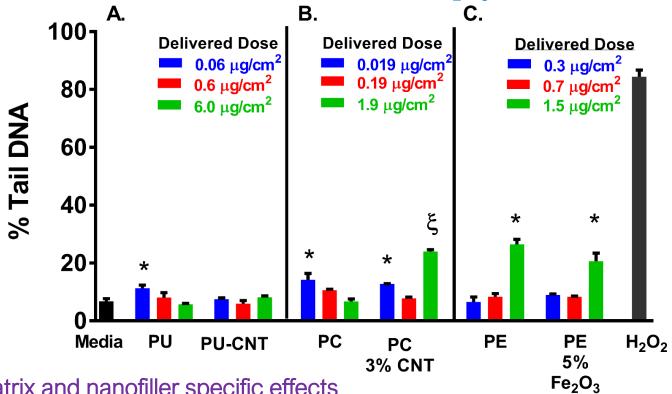

Results (7/10): Does nanofiller affect LCPM PAH speciation?



The presence of nanofiller <u>enhances</u> concentration of the <u>Higher Molecular Weight (HMW, mol. wt. > 178.2) PAHs</u> that are considerably more toxic/carcinogenic than the LMW PAHs ---> <u>does this translate to increased toxicity of LCPM in presence of nanofiller?</u>

Results (8/10): Does nanofiller affect toxicological profile of released LCPM?

In-Vitro Toxicological Assessment of released LCPM (PM_{0.1}) against human small airway epithelial cells: Case Study of PU vs. PU-CNT



- Yes, there is a "Nanofiller-specific Effect" on the toxicity of released LCPM
- The PM_{0.1} LCPM from PU-CNT exhibits <u>significantly higher cytotoxicity</u> as compared to pure PU
- The PM_{0.1} LCPM from PU-CNT exhibits <u>significantly lower cell viability</u> as compared to pure PU

Results (10/10): Can released LCPM induce DNA damage?

CometChip Platform for Assessment of Genotoxic Potential: Case Study of PU vs. PU-CNT, PC vs. PC-CNT and PE vs. PE-Fe₂O₃

- Yes, matrix and nanofiller specific effects
- LCPM from PC-CNT induces more single stranded DNA breaks compared to the pure PC
- No significant nanofiller effect on DNA damage was observed for PU vs. PU-CNT and PE vs. PE-Fe₂O₃

Conclusions/Outlook

Conclusions:

- We developed an Integrated Exposure Generation System (INEXS) for a systematic investigation of the thermal decomposition of a wide variety of thermoplastics and associated EHS implications.
- There is nanofiller release in the air, and seems more likely for metal/metal oxide ENMs than carbonaceous nanofillers.
- Bulk of the nanofiller is retained in the residual ash as loosely held nanoparticles and therefore raises concerns about its release, fate and transport in the environment.
- Released LCPM chemistry is determined by the polymer matrix on the macro-scale (EC/OC), but the nanofiller plays an important role in the speciation distribution of organic compounds such as PAHs.
 - Nanofiller enhances total PAH content as well HMW (more toxic) PAHs in the LCPM due to catalytic effects of released LCPM
- There is a nanofiller-specific effect on the toxicity and risks of released LCPM particles, most probably attributed to the nanofiller-mediated change in PAH profile of LCPM
 - LCPM from NEPs shows <u>higher cytotoxicity and DNA damage</u> in-vitro as compared to polymer without nanofiller for thermoplastics containing catalytic nanometals

Future work

- We aim to investigate thermal degradation and associated EHS implications of industrially-relevant nanoenabled building materials such as Nano-enabled Paints/Coatings under a variety of TD scenarios including the incomplete combustion scenario relevant for indoor building fires.
- We will study the Fate and Transport of Residual Ash under various natural environments (soil, aquifers, streams, etc.)

Significance/Impact of Results

- Research addresses critical EHS issues pertaining to the thermal degradation of NEPs in a commercial incinerator and during uncontrolled fire scenarios
- Linking specific toxicological and EHS effects arising from thermal decomposition of NEPs to NEP properties and combustion conditions can help industry to

- Design more effective exposure control strategies for professionals such as incineration facility workers and firemen
- Design specialized disposal methods for incinerated residues containing ENMs, e.g., effective barrier liners for landfills
- Regulators can use the realistic exposure and toxicological data to regulate and manage risks at end-oflife of NEPs without relying on toxicological data of pristine nanomaterials

List of Publications

Environmental Science Nano

pubs.acs.org/est

PAPER

Cite this: DOI: 10.1039/c4en00210e

An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products†

Georgios A. Sotiriou, Dilpreet Singh, Fang Zhang, Wendel Wohlleben, ab Marie-Cecile G. Chalbot, Ilias G. Kavouras and Philip Demokritou*

Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential **Environmental Health Implications**

Dilpreet Singh, ^{†©} Laura Arabella Schifman, ^{‡,§©} Christa Watson-Wright, [†] Georgios A. Sotiriou, ^{†,||©} Vinka Oyanedel-Craver, Wendel Wohlleben, and Philip Demokritou*,

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Contents lists available at ScienceDirect

NanoImpact

journal homepage: www.journals.elsevier.com/nanoimpact

CrossMarl

Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

Georgios A. Sotiriou^a, Dilpreet Singh^a, Fang Zhang^a, Marie-Cecile G. Chalbot^b, Eleanor Spielman-Sun^c, Lutz Hoering^d, Ilias G. Kavouras^b, Gregory V. Lowry^c,

Wendel Wohlleben a,d, Philip Demokritou a,*

Research Paper

Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics

Christa Watson-Wright, Dilpreet Singh, Philip Demokritou *

TOXICOLOGICAL SCIENCES, 146(2), 2015, 321-333

doi: 10.1093/toxsci/kfv095 Advance Access Publication Date: May 20, 2015 Research Article

PAPER

Science Nano

Cite this: Environ. Sci.: Nano, 2016,

Environmental

End-of-life thermal decomposition of nanoenabled polymers: effect of nanofiller loading and polymer matrix on by-products†

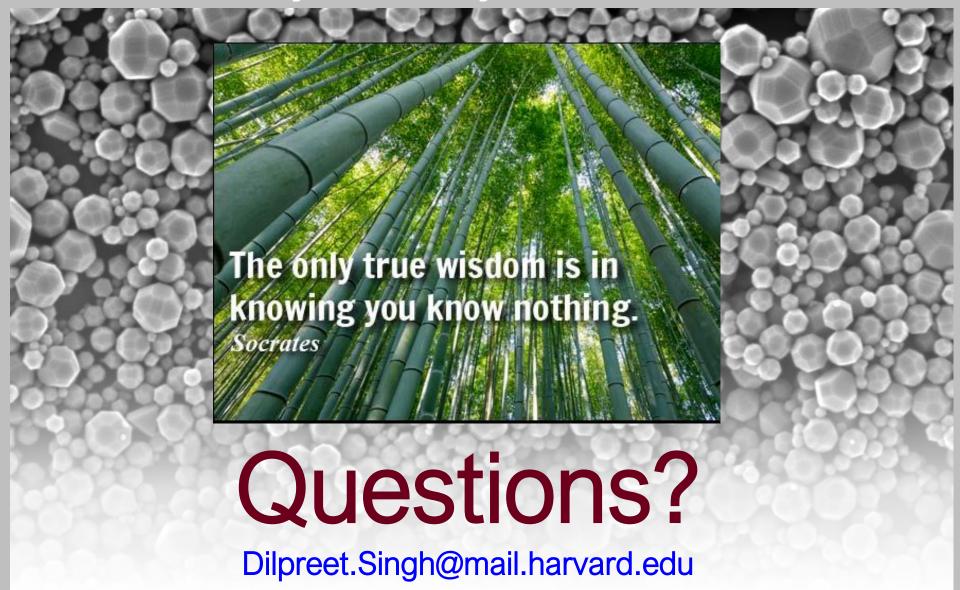
Dilpreet Singh,^a Georgios A. Sotiriou,[†] Fang Zhang,§^a Joey Mead,^b Dhimiter Bello,^b Wendel Wohlleben^c and Philip Demokritou*^a

Linking Exposures of Particles Released From Nano-Enabled Products to Toxicology: An Integrated Methodology for Particle Sampling, Extraction, Dispersion, and Dosing

Anoop K. Pal*, Christa Y. Watson*, Sandra V. Pirela*, Dilpreet Singh*, Marie-Cecile G. Chalbot[†], Ilias Kavouras[†], and Philip Demokritou*,²

Acknowledgements

- Advisor: Prof. Philip Demokritou
- NSF (grant no. 1436450 and 1235806)
- BASF AG
- MARINA Consortium
- Sustainable Nanotechnology Organization (SNO)



MARINA
MANAGING RISKS OF NANOMATERIALS

Thank you for your attention!

